拉巴斯

首页 » 常识 » 问答 » ldquo数学与人文rdquo系
TUhjnbcbe - 2021/1/28 15:53:00
好消息贵州省曹波工作室肛肠专家团队到惠 http://www.woekq.com/ysjk/17679.html

前言

法国高等科学研究院(IHES),位于法国巴黎郊外的一个从事数学和理论物理的基础研究的私立研究机构。在上海举办世博会期间,该院联系到法国馆,于年10月12日在法国馆的报告厅,举办了一个极富特色的“会见解码者”公众报告会,由八位法国顶级的数学家与中国数学家一起,为中国公众做了一系列的学术报告,目的是吸引公众来了解一些现代数学,会见一些在一线工作的第一流数学家。数学家们以公众可以接受的语言,深入浅出地介绍现代数学的一些美妙结果,这样的大数学家和公众见面交流的机会,在世界范围内都是不多见的。本文即是其中一位中国数学家刘克峰教授的报告《物理激发的数学》。

曾经有一些伟大的数学公式改变了人类历史的进程,如牛顿的第二力学定律,F=ma,爱因斯坦的质能方程,E=mc^2,以及牛顿的万有引力定律。这些公式极其简单,却蕴含了万物的相互作用和变化规律。今天我们能够制造飞船登上月球,能够利用核能量为人类服务,这些公式为此提供了重要的理论基础。这些美妙的公式也印证了老子的名言:“大道至简。”

“*治是暂时的,而数学方程式是不朽的。”

古今科学家们都坚信,数学是表达大自然规律最好的语言。任何科学理论最终和最完美的表达方式应该是数学方程式。爱因斯坦曾说过:“*治是暂时的,而数学方程式是不朽的。”作为数学家和物理学家,我们苦苦追寻的就是这样的方程式,它们简单、漂亮,能够深刻地揭示大自然的奥秘。历史上有许多伟大的数学物理学家,比如阿基米德,他发现了杠杆原理和穷竭法;牛顿,发现了万有引力定律,发明了微积分;欧拉,发现了流体力学的欧拉方程和数学的变分法;高斯,发现了电磁场的高斯定律,也奠定了微分几何基础;爱因斯坦,其广义相对论不仅是宇宙学的基础,也推进了现代微分几何与微分方程的发展。

爱因斯坦:“人生就像骑单车,想保持平衡就得往前走。”

在历史上,最成功的两个物理理论是量子场论和广义相对论

许多主要的数学领域,也是由于物理的刺激而发展起来的,如微分方程、微分几何、算子代数等等。我这里要阐述的是近三十年来由弦理论激发出的一系列数学成果。在历史上,最成功的两个物理理论是量子场论和广义相对论,他们分别精确地描述了微观世界里的粒子和宏观世界里的星球的运动规律。量子场论中的基本方程是薛定谔方程,广义相对论的基本方程是爱因斯坦场方程,它们在一定程度上却互不相容。从爱因斯坦开始,几代物理学家梦寐以求的就是将这两组方程统一到同一个理论框架下,这样大至星球,小到粒子这些宇宙万物的运行规律和相互作用都由这一组方程式来描述。这就是大统一理论,被人们称为“万有理论”,或者“终极理论”。经过几代物理学家的努力和无数次的失败,弦理论到目前为止被认为最有希望完成大统一的梦想。弦理论的基本假设是,宇宙最基本的粒子是一些高速震荡的弦。就像振颤的小提琴琴弦给我们美妙的旋律一样,弦理论中这些震动的弦作为最基本的元素构成了我们五彩缤纷的世界。大统一理论应该是唯一的,但是在过去三十年间,弦论学家们发展了五种自恰的弦理论,这五种理论看起来很不相同,但每一种都很合理地揭示了一些物理中的奥秘。在年的第二次弦理论革命中,威滕提出了M-理论将这五种理论联系在一起,发现它们彼此是通过弦对偶互相等价的。我们说两种理论相互对偶,如果他们可以描述同一种物理现象。过去十几年间,弦对偶已经产生出了很多惊人的数学与物理成果。把在不同的弦理论中的计算公式通过对偶等同起来,人们得到了许多令人叹为观止的数学公式和方程。数学中的流形翻译于英文的manifold,取自于文天祥的著名诗句:天地有正气,杂然赋流形,下则为河岳,上则为日星。弦理论中一个最基本的研究对象是卡拉比—丘流形。数学中的流形翻译于英文的manifold,取自于文天祥的著名诗句:天地有正气,杂然赋流形,下则为河岳,上则为日星。它可以描述任何可以用局部平坦空间所覆盖的物体。在年,丘成桐先生证明了著名的卡拉比猜想,此猜想断言,任何第一陈类为零的特殊流形,叫作紧凯勒流形,都具有黎奇平坦的度量,这一类流形现在被称为卡拉比—丘流形。而这里的陈类是以陈省身先生的名字命名的一种深刻的几何不变量,由陈先生在上世纪四十年代所发现。复三维的卡拉比—丘流形在弦理论中非常重要,它们代表着弦理论所需要的,我们目前无法看到的四维时空之外的六维空间。弦理论断言,有了这神秘的六维空间,就有了万有理论。通过比较不同弦理论的数学描述,人们常常发现意外而深刻的数学猜想,得到许多令人兴奋的数学结果。比如镜对称,大N陈—赛蒙斯与拓扑弦理论的对偶。而所有这些又往往与卡拉比—丘流形紧密地联系在一起。通过弦对偶,人们找到了实三维流形的拓扑几何与复三维流形的复几何之间的惊人联系。很多困难的数学计算,在转化到实的三维空间后变得异常简单。而实三维和四维空间中的一些意想不到的联系也通过复三维的卡拉比—丘流形被发现。基于对偶理论的猜想和新的想法,许多困难的数学问题得到解决,而这些新的方法和结果又往往是数学家们此前连做梦都想不到的。这些来自弦对偶的猜想的解决又反过来帮助物理学家最精确地验证了这些物理理论的正确性,这也是当今世界还无法用传统的试验方法能够做到的。

“上帝是个数学家”

为了让大家能够对历史上数学与物理之间激动人心的交融有所了解,我这里介绍几个我过去二十年间亲身经历的例子。我们将看到卡拉比—丘流形与弦对偶在这些进展中所起的奇妙作用。我的第一个例子是IIA与IIB两种弦理论的对偶,这也被称为镜对称理论。这种对偶的一个基本的假设是,一个卡拉比—丘流形都有它的一个镜像,它们描述等价的物理理论。通过镜对称理论得到的最惊人的数学发现是著名的坎德拉斯镜公式。这个年发现的公式曾经令数学界与物理学界都兴奋异常。它使得数学家们开始密切

1
查看完整版本: ldquo数学与人文rdquo系